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Table I. Secondary Deuterium KIE's in Various 3,3 Shifts" 

fcH/fe4-D2= j 1 9 6 
A.6-D2/J.H = 1 0 6 6 

,(D,) fe,DVfciH= 1.13 ±0.018 
'(D2) k2

H/k2
D'= 1.07 ±0.025 

i<D2) k3
Dt/k3

H= 1.156 ±0.024 
'(D2) fc4

H/A:4D4= 1-07 ±0.032 

0(D2) ksD*/kiH= 1.296 ±0.003 
(D2) k6

H/k(P*= 1.09 ±0.02 

,(D2) fc7
DVfc7H= 1-18 ±0.017'' 

(D2) A:8
H/(t8

D» = 1.155 ±0.023c 

,(D,) k9
D*/k9

H = 1.57 ±0.035 
(D2) Jt,oH/fcioD* = 1.07 ± 0.024 

a The standard deviations were determined as indicated in footnote 
12. * Reference 9.c Despite the favorable error analysis, we have no 
confidence in these since k^ and k% are only Vio_1/3oth of k$ and k6. 
Large variations in k-i or Zc8 will affect the calculated concentrations 
much less than similar variations in Zc5 and fcg. 

state structures, as deduced by changes in the relative KIE's, 
vary as predicted above.10 

The KIE's are shown in Table I; the rate constants for the 
three-component reversible reactions were determined by a 
siMPLEX1,a'b fit to the data using the integrated rate ex­
pressions of Frey and Solly.1 lc Each reaction was sampled 
roughly 12 times and each sample was analyzed at least 4 times 
using GC and an electronic integrator giving reproducibility 
of ±1%. The diphenyl-l,5-hexadiene reaction was monitored 
by HR-220 1H NMR spectroscopy which gave reproducibility 
in integrations of ±1%. 

Since no functional relationship between secondary KIE's 
and bond-order changes is available, the absolute location of 
the various transition states on the diagram are unknown. 
However, if the relationship is nearly linear,13 then the be­
havior of most degenerate 3,3 shifts can be reasonably ra­
tionalized,14 recognizing that the transition states should re­
semble the nonconcerted alternative, i.e., two allyl radicals or 
cyclohexane-1,4-diyl, that is more stable. 
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An Unusual Xenon Cation Containing 
Xenon-Nitrogen Bonds 

Sir: 

The earlier synthesis of FXeN(SO2F)2
1 from XeF2 and 

HN(SO2F)2 demonstrated that xenon was capable of forming 
bonds to elements other than oxygen and fluorine under ordi­
nary laboratory conditions. Since this report there have been 
no further examples of new compounds of this type. We have 
been working to provide additional examples of xenon-nitrogen 
bonds and to prepare the first xenon-carbon bond. Recently, 
we have been successful in the preparation of several new 
xenon-nitrogen species, thus eliminating the possibility that 
FXeN(SO2F)2 is unique. This work describes one of these new 
compounds, an unusual complex salt containing a dinuclear 
xenon cation with xenon-nitrogen bonds. 

After the synthesis of FXeN(SO2F)2, we looked for ways 
to further identify the xenon-nitrogen bond. Because the 
xenon-fluorine bond in FXeN(SO2F)2 appears to be very 
similar to that in XeF2, the canonical form FXe+N(SO2F)2

-

does not appear to dominate the bonding. It therefore seemed 
reasonable that FXeN(SO2F)2 might react with a strong Lewis 
acid, such as AsFs, in the following way: 

FXeN(SO2F)2 + AsF5 — (FO2S)2NXe+AsF6" 

A 1:1 adduct is indeed formed, but it is unstable and we have 
been unable to determine its structure. We have found that the 
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1:1 adduct decomposes under dynamic vacuum at 22 0C very 
cleanly to a stable compound of the composition 2FXeN-
(SO2F)2-AsF5. The following equations (millimoles) indicate 
a typical reaction sequence: 

FXeN(SO2F)2 (2.35) 

+ AsF5 (5.65) " 1 2 5 J l^! 0 °C FXeN(SO2F)2-AsF5 (2.25) 

16 h 

+ AsF5 (3.45) + Xe (0.07) 
22 0 C, 4 h 

FXeN(SO2F)2-AsF5 (2.25) —->-
vacuum 

2FXeN(SO2F)2 -AsF5 (1.04) + AsF5 (1.04) + Xe (0.12) 
Small amounts of other products, consisting mainly of SO2F2, 
[N(SO2F)2J2, and Xe2F3

+AsF6
-, are observed in the material 

pumped out at 22 0C, but only Xe and AsF5 could be effec­
tively measured. These results are very close to the expected 
values allowing for minor side reactions and some volatility of 
the 1:1 and 2:1 adducts. No reasonable alternative stoichi-
ometry could be found. 

The 1:1 adduct, which we believe is most probably 
(FO2S)2NXe+AsF6

-, is a bright yellow solid, whereas the 2:1 
compound is a pale yellow solid. The Raman spectrum of a 
small sample (~0.1 mmol) of the 2:1 adduct contained in a 
glass apparatus for low temperature Raman had not changed 
after 4 days under dynamic vacuum at 22 0C. This indicates 
a low vapor pressure and thermal stability at 22 0C. Analysis 
of the compound for xenon by reaction with H2O gave an av­
erage of 1.967 mol of Xe/mol of compound, very close to the 
expected 2:1 ratio. 

The formulation of the 2:1 adduct as [(FO2S)2NXe]2-
F+AsF6

- is supported by Raman and 19F NMR spectroscopy. 
The Raman spectrum taken at ca. -100 0C shows strong 
bands at 1494, 1236, 906, 832, 647, 333, 289, 261, and 226 
cm -1, which can readily be assigned to covalently bound 
-N(SO2F)2 groups.2 The relatively high frequency for the 
e(SO) symmetric and viSO) antisymmetric frequencies at 
1236 and 1494, compared with those of FXeN(SO2F)2, are 
in harmony with the -N(SO2F)2 groups being more covalent 
in the cation than in the neutral compound. The most striking 
difference between FXeN(SO2F)2 and the 2:1 spectrum is the 
complete absence of ^(XeF) at 504 cm -1 and the absence of 
any other intense Raman bands in the 500-620-cm-1 region. 
This clearly indicates the absence of terminal xenon-fluorine 
bonds.3 With regard to c(XeN) and ^(XeFXe) a moderately 
strong band at 486 cm -1 and a very weak band at 408 cm -1 

may be tentatively assigned to these modes.4 Finally, v\ of 
AsF6

- is clearly evident as a moderately intense band at 683 
cm -1. 

The 19F NMR of [(FO2S)2NXe]2F+AsF6- was obtained 
in BrF5 at ca. —45 0C. The compound is quite soluble forming 
a clear yellow solution, which undergoes little or no change 
after several hours at -45 0C. The initial interpretation of the 
NMR spectrum was difficult. Only two resonances are ob­
served (external CFCl3) at -61.2 [N(SO2F)2] and 61.0 
(AsF6

-) along with the expected AX4 spectrum of BrF5. The 
relative areas are 4.0:6.0 as expected for [(FO2S)2NXe]2-
F+AsF6

-, but no signal could be found for thebridging'flu-
orine.5 Either there is no bridging fluorine or that the resonance 
is unobservable because of some exchange process. 

We summize that [(FO2S)2NXe]2F+ ionizes in the fol­
lowing way: 

[(FO2S)2NXe]2F+ = FXeN(SO2F)2 + XeN(SO2F)2
+ 

Such a process could broaden the Xe-F resonance to a point 
where it could not be observed. This is supported by our finding 
that a 19F NMR spectrum of a BrF5 solution of a mixture 

(~1:1) of FXeN(SO2F)2 and [(FO2S)2NXe]2F
+AsF6- shows 

no F on Xe resonance, whereas resonance for FXeN(SO2F)2 
is easily observed under identical conditions for the pure 
compound. The S-F resonance of FXeN(SO2F)2 and 
[(FO2S)2NXe]2F+AsF6

-, which are different in the pure 
compounds by ~400 Hz, coalesce into a single peak, essentially 
at the midpoint of the two original signals. The relative area 
of this signal to that of the AsF6

- is ~ 1:1. 
The above data clearly establishes the existence of 

[(FO2S)2NXe]2F+AsF6
- and further amplifies the similarity 

between XeF2 and FXeN(SO2F)2. Whereas XeF2 forms both 
1:1 and 2:1 adducts with AsF5, the 1:1 adduct FXe+AsF6

- is 
unstable at 22 0C to form the 2:1 adduct Xe2F3

+AsF6
-.3 '6 

Interestingly, none of the xenon esters of the type FXeOR 
exhibit the same chemical behavior. While FXeOSO2F forms 
an unstable 1:1 adduct with AsF5, decomposition results in the 
formation of Xe(OSO2F)2 and (FXe)2SO3F+AsF6

-.7 The 
latter compound has been prepared in various ways using HF 
solvent.8,9 On the other hand, FXeOTeF5 is reported to form 
a stable 1:1 adduct with AsF5 which is said to be XeOTe-
F5

+AsF6
-.10 
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Stereochemistry of Free-Radical Substitution at 
Trivalent Phosphorus. Permutational Processes 
Available for Stereochemically Nonrigid 
Phosphoranyl-Radical Intermediates 

Sir: 

The rapid pairwise exchange of substituents attached to 
pentacovalent phosphorus (1 <=* 2) has been well established.1 

In trigonal-bipyramidal SF42 and related sulfuranes,3 where 
the lone" pair can be considered a fifth ligand, DNMR studies 
suggest that an analogous process with the electron pair as 
pivot is operative. Such pairwise ligand permutations have been 
classified as mode I4 for which Berry5 and turnstile6 processes 
have been postulated as mechanistic alternatives. Phosphoranyl 
radicals, X4P-, bear at least superficial similarity to the above 
intermediates in that they are near-trigonal-bipyramidal in 
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